A Minimal Method for Restoring Temporal
Information Consistency

Mahat Khelfallah and Belaid Benhamou

LSIS - CMI , Université de Provence
39 Rue Joliot-Curie - 13453 Marscille - France
{mahat,Belaid. Benhamou}@cmi.univ-mrs.fr

Abstract. Information often comes from different: sources and merging
these sources usually leads to the apparition of conflicts which have to be
detected then eliminated in order to restore the information consistency.
In this paper, we are interested in temporal information in the framework
of simple temporal problems (STP). We propose a method which restores
the consistency of an STP in a minimal way, i.e., by correcting a minimal
number of constraints. This method computes the minimal subsets of
constraints whose correction is sufficient to climinate all the conflicts of
the STP, without an exhaustive detection of these conflicts. The method
we propose is based on Reiter’s algorithm for computing the hitting sets
of a collection to identify the minimal subsets of constraints to correct.
Keywords: Temporal constraints, STP, Restoring consistency.

1 Introduction

Information often comes from different sources and merging these sources usually
leads to the apparition of conflicts which have to be detected then eliminated in
order to restore the information consistency.

One of the famous formalisms for representing temporal information is sim-
ple temporal problem (STP) formalism proposed by Dechter, Meiri and Pearl (2]
where temporal information is represented by linear constraint networks. Many
rescarches investigated the STP resolution (2, 12]. However, the resolution meth-
ods do not propose any solution when the STP is inconsistent. Few rescarch
works focused on inconsistent STPs. We can cite [5] where a local mcthod is
proposed to merge STPs. This method considers the case where the merging op-
eration of STPs leads to an inconsistent STP, and proposes a local method for
restoring its consistency. However, this method does not restore the consistency
in a minimal way. Indeed, it corrects more constraints than needed to eliminate
all the conflicts.

In this paper, we are interested in restoring the consistency of temporal infor-
mation in the framework of simple temporal problems (STP) in a minimal way.
We propose a method which restores the consistency of an STP by correcting
a minimal number of constraints. The classical idea for doing that consists first
in detecting all the conflicts of the STP, then in identifying the conflicting con-
straints, and finally in correcting these constraints. The main drawback of this

© A. Gelbukh, S. Torres, 1. Lopez (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 19, 2006, pp. 43-56

44 Khelfallah M. and Benhamou B.

idea is the exhaustive detection of conflicts of the STP which can be impossible
when the STP is highly conflicting.

The method we propose here, computes the smallest subsets of constraints
to correct without explicitly enumerating all the conflicts. It is based on Reiter’s
algorithm for computing the hitting sets of a set collection (8].

The rest of this paper is organized as follows. In section 2, we recall some
background on simple temporal problems (STPs). The conflict detection algo-
rithm is presented in section 3. We show in section 4 how to identify subsets
of constraints to correct in order to restore the consistency. Section 5 describes
how the correction operation is performed. In section 6, we give our consistency
restoration method. In section 7, we present some previous related work and
then we conclude in section 8.

2 Background

A simple temporal problem (STP) S is defined by §=(X,C) where X is a finite
set of variables Xg, ..., Xn, having continuous domains and representing temporal
points. C' is the set of constraints of the form X; — Xi < a;; defined on these
variables, where a;; is a real scalar. Constraints of the form X; — X; > a;j
can be also represented since X; — X; > a;j is equivalent to the constraint
Xi— X < —aj. A tuple X = (21, .. Ty, of real values is a solution of the STP
S if the instantiation {X;=z1,..., Xn,=2,} satisfies all its constraints. The STP
S is consistent if and only if it has a solution.

The STP S=(X,C) is associated with a directed edge-weighted graph, G =
(X, Ey), called the distance graph where X the set of vertices is the set of vari-
ables of the STP S, and E, is the set of arcs representing the set of constraints
C. Each constraint X; — X; < a;; of C is represented by the arc i — j', which
is weighted by a;;. For more details see [2].

Ezample 1. We consider the STP S = (X, C) where X = {Xo, X1, X2, X3, X4}
and

Xo— X1 <-40, X —Xo < -30,

X3—X1 <10, Xo-—X4<-45,

X4 —X3<20, X;—-X,<10,

Xo—X3<-25, Xog—X2<20

The STP S is associated with the distance graph shown in Figure 1. This example
will be used in the next sections to illustrate our method.

C=

3 Conflict Detection

In this section, we shall see how conflicts are detected in an inconsistent STP-
Let S be an inconsistent STP and G4 be the distance graph associated with
the STP S.

! For simplicity a vertex X; of the graph G4 is denoted by its index 1.

A Minimal Method for Restoring Temporal Information Consistency 45

Fig. 1. The distance graph of the STP S defined in Example 1

The method that we propose to detect conflicts in the STP S is based on a
well known result which we recall in the following theorem.

Theorem 1. [9, 7, 6] An STP is consistent if and only if its corresponding dis-
tance graph does not contain negative circuits?®.

We can deduce from Theorem 1 that for restoring the consistency of an
STP, we need to remove all the negative circuits in its distance graph. We give a
weaker condition for removing all the conflicts of an STP than the one stipulated
in Theorem 1. It is sufficient to remove all the elementary® negative circuits in
the distance graph to restore the consistency of an STP, as stated in the following
theorem.

Theorem 2. An STP is consistent if and only if its corresponding distance
graph does not contain elementary negative circuits.

Proof. (=) If an STP is consistent then its distance graph does nol. contain neg-
alive circuits (Theorem 1), and in particular it does not contain any elementary
negative circuit. (<«=) If there is no elementary negative circuits in the distance
graph, then it does not contain negative circuits (since a circuit is formed from el-
eémentary circuits), and by using Theorem 1, we conclude that the corresponding
STP is consistent. O

The detection of conflicts amounts to detecting elementary negative circuits
instead of detecting negative circuits. Thus, we can associate a conflict of S with
an elementary negative circuit of Gg, a such conflict is defined as follows.

Definition 1. Let S be an STP and Gy be its distance graph. A conflict of S is
@ pair (0,d) where o is an elementary negative circuit of the distance graph G,

and d is the distance® of the circuit o.

\

2 . . [. e,

- A negative circuit is a circuit whose the sum of its arc weights is negative.

q An elementary circuit is a circuit which does not contain any smaller circuit.
The distance of a path is the sum of its arc weights.

46 Khelfallah M. and Benhamou B.

We recall that each arc i — j in Gg, weighted by a;;, represents the constraint
5+ Xj — Xi < aij of S. We can define now the notion of conflicting constraint.

Definition 2. Let S = (X,C) be an STP and let c = (0, d) be a conflict of S.
A constraint c;j € C is a conflicting constraint of the conflict ¢ if and only if
(i — j) is an arc of the elementary negative circuit o.

Let ¢ be a conflict of the STP S. We define ConfConsl(c) as the conflicting
constraint set of the conflict c.

The number of conflicts in a STP is equal to the number of elementary
negative circuits of its distance graph. This number can be exponential on the
number of the STP variables. Therefore, an exhaustive conflict detection can be
time and space consuming, and has to be avoid.

The Conflict-Detection function given by Algorithm 1 detects a conflict of
the STP and returns the set of its conflicting constraints. This function is based
on the Floyd- Warshall algorithm (3, 1]. The idea is to compute the shortest path
for each pair of vertices (i, j) of the distance graph associated with the STP. In
particular, if i = j, the algorithm computes the shortest circuit visiting the vertex
i. If such circuit is negative, a conflict is detected and the algorithm returns the
set of conflicting constraints involved in the detected negative elementary circuit.
Otherwise, the algorithm returns the empty sct.

Proposition 1. Let S be an STP. The Conflict-Delection function applied to
the STP S returns the set of conflicting constraints of a conflict of the STP S
if S is inconsistent. Otherwise, it returns the empty set.

Proof. The proof can be established trivially from the correction of the Floyd-
Warshall algorithm (3].

Complerity of the Conflict-Detection function. The initialization step is done in

O(]X|3). Testing if a path is elementary (line 8) can be done in O(|X]), and the

complexity of the function ConfConst which returns the conflicting constraints

involved in the its argument is O(|X|) (each elementary negative circuit of the

distance graph can contain at most |X| vertices, therefore it can involve at most

IOXI - i constraints). Hence, the complexity of the Conflict-Detection function is
(1X1%).

4 Identification of Minimal Subsets of Constraints to
Correct

In order to guarantee the elimination of all the conflicts, at least one conflicting
constraint of each conflict has to be corrected. In other words, the intersection
of the set of corrected constraints and the set of conflicting constraints of each
conllict has to be not empty. Let Ls be the collection of sets defined by Ls =

5 The o sign represents the path concatenation operation.

A Minimal Method for Restoring Temporal Information Consistency 47

Algorithm 1 - Conflict-Detection(X,C) : C’

X - set of variables

C - set of constraints

C’ - set of conflicting constraints of a conflict of the STP (X,0)
Var mat - | X| x | X| matrix of (path,distance) pairs
Begin
{ Initialization }

1. Fori,j:=1to|X|do

2. If the constraint (X; — X; < a;;) € C then mat;j := (i — j,aij);
3. else if i = j then mat,; := (0,0); else mat;; := (0, 00); end.if;
4. End.if; .

5. End_for;

{ Computing shortest paths }

6. For k:=1to|X|do

7. For ¢,j:=1 to |X| do

8. If (mat;x.path e "’matk, .path) is an elementary path

9. and (matix.distance + mats;.distance < mat,;.distance) then
10. mati;.distance := mati,.distance + mat,;.distance;

11. malij.path := mat;..path e maty;.path,;

12. If i = j then return ConfCons/(mal;;.path); end_if;

13. End_if;

14. End _for;
15. End_for;

16. Return §;
End

{ConfConst(c) : cis a conflict of the STP S}. Therefore, the subset of corrected
constraints is a hitting set of the collection Lgs. The minimization of the corrected
constraint number needs to find a minimal hitting set of the collection Lg. We
recall the definitions of a hitting set and a2 minimal hitting set.

Definition 3. Let £ be a collection of sets. H is a hitting sct of the collection
L if and only if for each set s of L, HNs # 0.
A hitting set H,, of a collection L is minimal (according to cardinality) if and
only if for each hitting set H of L, |H,,| < |H]|.

Now, we can present the Minimal-Ilitting-Sets function (Algorithm 2), which
computes the minimal hitting scts of the collection of scts representing the con-
flicts of an STP.

When the Minimal-Hitting-Sets algorithm is applicd to the STP S = (X, C),
it returns the sets of all minimal hitting sets of the collection Lg. It constructs
a directed acyclic graph DAG for the collection L. Each node n of this DAG is
labeled by the set Label(n) which is the set of the conflicting constraints involved
in a conflict of the STP defined by (X, C'\ H(n)) where H(n) is the sct of labels
(which are constraints) of the branches from the DAG’s root to the node n.

48 Khelfallah M. and Benhamou B.

Algorithm 2 - Minimal-Hitting-Sets(S) : HS

S = (X,C) - an inconsistent STP
HS - set of the minimal hitting sets of Ls

Begin

1. HS:=0

2. Create a node n;

3. Label(n) := Conflicl-Detection(X, C);

4. H(n):=W

5. Inc:={n};

6. While lnc# 0 do

7 Ins :={;

8. For each node n € lnc do

9. For each conflicting constraint ¢ € Label(n) do

10. If there is a node n' € Ins such that H(n') = H(n) U {c} then
11. Point the branch leaving n and labeled by ¢ to the node n';
12. Else

13. Construct the node n’ the son of the node n;

14. H(®') := H(n) U {c};

15. Label(n’) := Conflict-Detection(X, C \ H(n"));

16. If Label(n') = 0 then HS := HSU H(n'); endif;

17. Ins:=InsuU{n'};

18. End.if;

19. End _for;

20. End _for;

21 If HS =) then Inc := Ins; else Inc := 0; End_if;
22. End_while;

23. Return HS;

End.

The initialization step of Algorithm 2 fixes the set of hitting sets H.S to the
empty set, and constructs the DAG’s root n and labels it by the set of conflicting
constraints of a conflict of the STP S. The function uses two node lists: Inc which
is the current node list and Ins which is the list of nodes which are successors of
Inc nodes. Inc is set to the DAG’s root n.

In the hitting sets computing step (lines 6-23), the DAG is constructed level
by level until the list Inc becomes empty. In the "for” loop (lines 8-20), each
node n of the Inc list has |Label(n)| successors. The branch connecting the node
n to one of its successors is labeled by a conflicting constraint ¢ € Label(n)-
Before constructing a new successor of the node n, we check (line 10) if there is
not a node n’ which can be reused. If a such node exists then n’ is a successor of
n (line 11). Otherwise (lines 13-17), a new node n’ is generated and is inserted
into the node list {ns. The label of the node n’ is a detected conflict of the STP
defined by (X, C \ H(n'). The removal of the constraints H(n') from the initial
set of constraints C guarantees that Label(n’)NH(n') = 0. If Label(n') = 0, i-¢»
if no conflict is detected then the set H(n') is a minimal hitting set and is added

A Minimal Method for Restoring Temporal Information Consistency 49

to the set HS (line 16). The construction of a new level of the DAG is stopped

when a hitling set is computed (HS # 0), in order to avoid non-minimal hitting
set computing.

Let apply Algorithm 2 to our example.

no : {co,2,¢2,0}

C
0,2 2,0
n1 : {c21,01,3,¢3,2} n2: {¢2,1,€1,3,¢3,.2}
2,1 1.3 3.2 2,1 a3 2

n3 ¥ ng '@ ns:{cq,2,¢2,1,€1,3,¢34)} n6: Y n7: {co2,¢1,0,¢4,2,¢2,1} ns : {co0,2,€1,0,¢4,2:€2,1}

Fig. 2. Hitting sets search DAG for the STP defined in example 1

Ezample 2. The application of the minimal hitting sets function (Algorithm 2)
to the STP defined in example 1 constructs the DAG depicted in figure 2. We
can see that this DAG contains 3 nodes labeled by "0” which are nodes ngz, ng
and ne. This identifics the three following minimal hitting sets: by = {co,2,¢2.1},

hy = {cp,2, 1,3} and hg = {c2,0,¢2,1}. Successors of the nodes ns, n7 and ng have
not been constructed because every hitting set obtained after that will contain
more than two constraints and therefore cannot be a minimal hitting set.

The following proposition states that the minimal hitting sets algorithm is
correct and complete.

Proposition 2. The Minimal-Hitting-Sets algorithm is correct and complete.

Proof. To prove the correctness and completeness of the Minimal-Hitting-Sets
algorithm, it is sufficient Lo prove the following three points: (1) the initial al-
gorithm without pruning computes all the minimal hitting sets, (2) the pruning
rules that we use do not eliminate some minimal hitting sets, and (3) the pruning
rules eliminate all non-minimal hitting sets.

The access to the collection Lg is correct by Proposition 1 which states
that the Conflict-Detection function returns an empty set if the input STP is
consistent.

1. Proof by induction on the cardinality of the collection Ls.

Base: If |[Ls| = 0, then the set of hitting sets of Ls = {0}, and the DAG
associated with Lg contains only one node which is the root node ng labeled
by Label(no) = 0. As H(ng) = @, Algorithm 2 computes all the minimal
hitting sets of the collection Ls.

Induction: Let | > 0. (Induction hypothesis) Suppose that for every collection
Ls such that |£g] < I, Algorithm 2 computes all the minimal hitting sets
of Lg. We prove that this is true also for collections Lg such that |Lg| > L.

50

Khelfallah M. and Benhamou B.

Let T be a DAG associated with the collection Ls. Let no be the T root,
ng is labeled by a set Ly = {my,...,ms} such that Lo € Ls. Let m; be an
element of Lo. Let Ls, be the collection of sets which are elements of the
collection L5 and which do not contain the element m;, i.e., Ls, = {L € Lg :
m; ¢ L}. The sub-DAG under m; is a DAG associated with the collection
Ls,. Since |Ls,| < |Lsl, |Cs.| < L. Hence, by the induction hypothesis, the
DAG associated with the collection Ls, computes all the minimal hitting
scts of Lg,. Thus every minimal hitting set of the collection Ls, corresponds
to a sct of constraints H of a node labeled by *@” in the DAG associated
with the collection Ls,. This implies that for every set of the form h; U {m;}
where h; is a minimal hitting set of Ls,, there is a node n of the DAG T
such that H(n) = h; U {m;} and Label(n) = 0. To prove the completeness
of our algorithm, it is sufficient to prove that every minimal hitting set h of
the collection Lg is such that h = h; U {m;} where m; € Label(ng) and h;
is a minimal hitting set of the collection Ls,.

Let h be a minimal hitting set of Ls. By definition, there is an element m;
such that m; € h and m; € Ly (Lo € Ls). This element m; is sufficient to
remove all the sets L; € Lg such that m; € L;. The remaining elements of h
must belong to the remaining sets of the collection Lsg, i.e., &\ {m;} must
be a minimal hitting set of the collection Lg,, which is true by construction.

. We prove that the pruning rules we use do not remove nodes n such that

Label(n) = 0 and H(n) is minimal. Let T be the DAG associated with the
collection Lg.

(a) Reusing nodes (line 11 of Algorithm 2) does not remove nodes. It avoids
the construction of nodes n’ when there is a node n of T such that II(n) =
H(n'). Let Ls1 and Lg2 be the collections defined by £s1 = {L € Ls :
LNH(n) #0} and Lsa = {L € Ls: LNH(n) = 0}. Suppose that T and T
are the sub-DAGs of T, without pruning, having as root respectively nodes n
and n’. We prove that the minimal hitting sets obtained from the sub-DAG
T, are also obtained from T). Suppose that there is a node n; of T, such
that Label(n;) = @ and H(n;) = h where h is minimal hitting set of Ls.
Actually, h = H(n') U h' where h’ is a minimal hitting set of Lg; because
II(n') is a minimal hitting set of Lg;. Since A’ is a minimal hitting set of
Ls> and T; is the DAG associated with the collection Lg2, there is a node
ng of Ty such that Label(n;) = @ and H(n;) = H(n) U k' (the set of branch
labels from the node n to the node n; is the minimal hitting set h'). However.
H(n) = H(n'), thus there is a node n; of T} such that Label(n;) = @ and
H(n;) = h. Thercfore, T} and T, compute the same minimal hitting sets.
(b) To prove that stopping the construction of more levels of the DAG T
after the generation of a node n such that Label(n) = @ does not eliminate
minimal hitting sets of the collection Lg, it is sufficient to prove that the
obtained hitting sets from non developed levels are not minimal. Let i be the
smallest number such that there is a node n of T where Label(n) = @ and
[H(n)| = 1. Let n’ be a node of T such that Label(n’) = @ and |H(n")| > i.
H(n) and H(n') are hitting sets of Ls. But, [H(n')| > H(n), thus, H(n') is
not a minimal hitting set of Lg.

A Minimal Method for Restoring Temporal Information Consistency 51

3. Suppose there is a node n of the non-pruned DAG such that Label(n) = 0
and H(n) is not a minimal hitting set of Lg. Let h,, be a minimal hitting set
of Ls. From point 2 of this proof, we deduce that there is a node n’ such that
Label(n') = 0 and H(n') = hm. As H(n) is not a minimal hitting set of Lg
and H(n') is 2 minimal one, thus by definition, |H(n')| < |H(n)|. This means
that the level of node n is under n"’s one. However, the construction of DAG

levels is stopped after the generation of a node labeled by "¢". Therefore,
the node n will not be constructed. O

Proposition 3. Let S = (X, C) be an inconsistent STP and Ls be the collection
of sets defined by Ls = { ConfConst(c) : c is a conflict of S}. The mazimal
depth of the DAG of minimal hitting sets search of the collection of Ls is |C|.

Proof. Let p be the depth of the DAG T constructed for minimal hitting set
search of the collection Lg. Let h be a minimal hitting set of Ls. Thus, there is
a node n of T such that Label(n) = @ and H(n) = h (correction of the Minimal-
Hitling-Sets algorithin, by Proposition 2). Since all the minimal hitting sets of
Ls have Lhe same cardinality, p = |H(n)|, and thus p = |h|. By definition,
Ls elements are subsels of constraints, thus h C C. Therefore, |h| < |C|, and
p<|Cl. O

Complezity of the Minimal-Hitting-Sets algorithm. Let X and C be respectively
the set of variables and the set constraints of the input STP S. Conflict de-
tection (line 3) can be done in O(]X|*) and the other initialization operations
are elementary and can be done is constant time. At every iteration of the loop
(6-23), a level of the DAG is constructed. The maximal depth of this DAG
is |C| (Proposition 3), then there is at most |C] iterations of the loop (6-23).
We compute now the complexity of each of its iterations. The loop (8-20) per-
forms |lnc| iterations. For every node n of the list Inc, the loop (9-19) performs
|Label(n)| iterations. Since the set Label(n) contains at most |X| constraints,
then the number of iterations of the loop (9-19) is bounded by |X|. In line 10,
H(n) is compared with the set H of Ins elements. Each comparison can be done
in O(|C|) because H contains at most |C| constraints. Thus, the test is per-
formed in O(|C| x |ins|). The complexity of conflict detection is O(|X|*). thus
the complexity of lines (12-18) is O(| X |*). Therefore, the complexity of the loop
(9-19) is O(|X| x (| X|* +|C| x |lns|)). The loop (8-20) performs |inc| iterations,
thus its complexity is O(|inc| x |X| x (IX|*+|C]| x |ins[)). Now, we compute the
bounds of |lnc| and |inc|. At iteration i of the loop (8-20), Inc contains nodes
created at the iteration i — 1. Their number is bounded by the number of subsets
of constraints whose cardinality is equal to i. This number is roughly bounded
by 2/€ which is the number of all the subsets of C. Similarly, |lns| is bounded
by 2IC1, Therefore, the complexity of the loop (8-20) is in O(|X| x |C| x (21€1)%).
Since the loop (6-23) performs at most |C| iterations, then its complexity is in
O(IC2 x| X | x (2/€1)2), and the complexity of the Minimal-Hitting-Sets algorithm
is O(ICJ? x | X| x 22*1€).

52 Khelfallah M. and Benhamou B.

We prove in the next section that the correction of the constraints corre-
sponding to a minimal hitting set of the collection Ls corresponds to a minima]

consistency restoration of the STP S.

5 Correction of the Conflicting Constraints

Now, we shall sce how to perform the corrections. Let ¢ = (0,d) be a conflict
of the STP S. The elimination of the conflict ¢ needs the elimination of its
associated elementary negative circuit o. This implies the correction of at least
one of the constraints involved in @, i.e., one of the constraints of ConfConst(c).
The following proposition shows how this correction is made.

Proposition 4. Let S be an STP and ¢ = (0,d) be a conflict of S. Let c;; : X, —
X; < aij be a conflicting constraint of ¢, i.c., cij € ConfConst(c). Replacing
the constraint cij : X; — X; < aij by the constraint X; — X; < a;; — d eliminates

the conflict c.

Proof. Let ¢ = (0.d) be a conflict, and let ¢;; : X; — X; < a;; be a conlflicting
constraint of ¢, ¢;j € ConfConst(c). The circuit ¢ has a negative distance d,
and replacing the constraint X; — X; < a;; by the constraint X; — X; < a;; —d,
will make this distance equal to zero. Hence the negative circuit ¢ is eliminated
and the conflict ¢ is corrected. O

Ezample 3. In the STP of Example 1, the elementary negative circuit (0 — 2 —
0) whose distance is -10 is detected. This defines the conflict ((0 — 2 — 0),-10)
between the constraints X5 — Xg < =30, Xp — Xo < 20. This conflict can be
removed by either replacing the constraint X, — Xy, < —30 by the constraint
X3 — Xo < —20, or replacing the constraint Xo — X2 < 20 by the constraint
Xo - X2 <30.

The following proposition states that a conflict is eliminated if and only if
one of its conflicting constraints is corrected.

Proposition 5. Let S be an STP and ¢ = (o,d) be a conflict of S. The conflict
¢ is correcled if and only if at least one of the constraints c;; € Con fConst(c)
is corrected with respect to Proposition /4.

Proof. Let S be an STP and ¢ = (o,d) be a conflict of S. (=) Suppose that
the conflict ¢ = (o,d) is eliminated. This implies that the negative circuit o is
eliminated, i.e., its distance is changed from negative to positive. This is done
by changing at least the weight of one of its arcs. In other words, by correcting,
at least, one constraint c;; of Con fConst(c). (<=) The correction of a constraint
¢ij € ConfConsl(c) (with respect to Proposition 4) makes the conflict circuit @
positive. Ilence, the conflict ¢ = (a,d) is eliminated. O

Proposition 6 guarantces that when correcting a constraint no new conflicts
are generated.

A Minimal Method for Restoring Temporal Information Consistency 53

Proposition 6. The correction of a constraint cannot generate new conflicts.

Proof. Correcting a constraint does not decrease the distance of any circuit,

then it cannot generate new negative circuits. Therefore, no new conflicts are
generated. O

Now, we give the Constraint-Correction function (Algorithm 3) which cor-
rects the subset of constraints C' given as input. First, this function computes
the quantities to add to the corrected constraints for eliminating the conflicts.
These quantities correspond to the distance of the shortest elementary negative
circuits of the distance graph associated with the STP S = (X, C). We apply
the Floyd- Warshall algorithm [3, 1] to compute them.

Algorithm 3 - Constraint-Correction(X,C,C’) : C"

X - set of variables

C - set of constraints

C' - set of constraints to correct

C" - set of corrected constraints
Var : mat - | X| x | X| matrix of recals
Begin

1. Fori,j:=1to|X|do

2. If there is a constraint X; — X; < ai; of C then mat;; := aj;
3. Else if 1 # j then mat;; := oo; else mat;; := 0; end_if;
4. End.if;

5. End_for;

6. Fork:=1to|X|do

7. For i,j:=1to |X]| do

8. If mat;; > matix + mati; then mat;; := matix + maty;; endif;
9. End for;

10. End _for;

11. C":=C;

12. For every constraint c;; : X; — X; < aij of C' do
13. C" := C" \{cij} U {ci; : X5 — Xi < aij — mati;};
14. End_for;

15. Return C”;

End.

Proposition 7. Let S = (X,C) be an inconsistent STP and let C' be a subset
of C. Applying the Constraint-Correction algorithm to respectively X, C and c’
eliminates every conflict of S involving a conflicting constraint of C'.

Proof. At the end of line 10, for every pair of variables (X;, X;) of X, mat;; <
min;;, where min,; is the distance of the shortest path from i to j in the distance
graph of the STP S (correction of the Floyd-Warshall algorithm - see (3]). The
rest of the proof is based on the proposition 4. O

54 Khelfallah M. and Benhamou B.

Complexity of the Constraint-Correction function. The complexity of the loop
(1-5) is O(|X|?), and the loop (6-10) is in O(|X[*). The loop (12-14) can be done
in O(|C]). Since |C| < |X|?, then the complexity of the Constraint-Correctioy,
function is O(|X[%).

The following theorem states that the correction of the constraints corre-
sponding to a minimal hitting set of the collection representing the conflicts of
the STP is a minimal consistency restoration of the STP.

Theorem 3. Let S be an STP and let Ls be the collection of sels representing
the conflicts of S such that Ls = {ConfConst(c) : ¢ is a conflict of S}. A mini-
mal consistency restoration of S is equivalent to the correction of the constraints
corresponding to a minimal hitting set of the collection Ls.

Proof. (=>) Let Cy, be a minimal subset of corrected constraints in a minimal
restoration of consistency of the STP S. Each conflict ¢ of S is removed by the
correction of, at least, one constraint ¢;; of ConfConst(c) (Proposition 5). This
means that C,, N ConfConst(c) # @ for every conflict ¢ of S. ConfConst(c)
is also an element of the collection Lg. Thus, for every e € Lg, Cp, Ne # 0.
Therefore, C,n is a hitting set of the collection Ls. Furthermore, this hitting
set is minimal because the consistency restoration corrects a minimal number of
constraints.

(«<) Let h,, be a minimal hitting set of the collection Ls, and suppose that the
corresponding constraints are corrected. However, each element e € Ls repre-
sents the conflicting constraint set of a conflict ¢ of S, i.e., e = Con fConst(c),
and e N hy, # 0. Then, we conclude that for each conflict ¢, at least one of its
conflicting constraints is corrected. Hence, each conflict ¢ is eliminated (Proposi-
tion 5). This implies that the correction of the constraints corresponding to h,,
climinates all the conflicts of S. Since h,, is minimal, we can conclude that the
number of corrected constraints is minimal. O

6 STP Minimal Consistency Restoration Method

Now, we can describe our method for minimal consistency restoration for STP
which is based on the minimal hitting sets search. This method is called Min-
Consistency-Restoration and is given in Algorithm 4. The first step of this
method is the minimal hitting set search of the collection Ls representing the
conflicts of the input STP S. This operation is performed by applying the
Minimal-Hitting-Set function (Algorithm 2). Each obtained minimal hitting set
corresponds to a minimal (in term of cardinality) subset of constraints whose cor-
rection is sufficient to remove all the conflicts of the STP S. For every computed
hitting set hs a consistent STP is obtained by the correction of the constraints
corresponding to hs, by applying the Constraint-Correction function (Algorithm
3). The Min-Consistency-Restoralion returns ¥ a set of consistent STPs.

Theorem 4. The Min-Consistency-Resloralion algorithm is correct and com-
plete.

Proof. The proof is trivially established from Theorem 3 and Proposition 7. O

A Minimal Method for Restoring Temporal Information Consistency 55

Algorithm 4 - Min-Consistency-Restoration(S) : £
S - STP
X - set of consistent STPs

Begin

1. Z=0

2. HS := Minimal-Hitting-Sets(S);

3

4

5

For every minimal hitting set hs of HS do
X = XU (X, Constraint-Correction (X, C, hs));
. End_for;
6. Return X,
End

Complezity of the Min-Consistency-Restoration function. The complexity of the
Minimal-Hitting-Sets function is O(|C|? x 1 X | x 22%I€), Since the number of mini-
mal hitting sets |H S| < 2!€1, the loop (3-5) performs |H S| < 2!€! iterations. Each
iteration is done in O(|X|*). Therefore, the complexity of the Min-Consistency-
Restoration function is O(|C|? x | X| x 22%I€1),

7 Related Work

The Reiter’s algorithm for diagnosis (8] has been adapted in previous works (11,
10) for revision methods in the framework of propositional logic. Our interest is
to do that in the framework of constraints.

Some previous works investigated the consistency restoration of temporal in-
formation in the framework of STPs. Different. revision strategies for a geographic
application represented by an STP were proposed in [4]. One of them restores
the consistency in a minimal way. The difference with our minimal method is
that the STPs handled in [4] are particular STPs where the detection of all
conflicts is done in polynomial time complexity. Our method deals with more
general STPs where the number of conflicts can be exponential on the number
of STP variables.

A local method for restoring the consistency of general STPs was proposed
in [5]. This method returns a consistent STP but the number of corrected con-
straints is not minimized as in the method which we propose here.

8 Conclusion

In this paper, we focused on inconsistent simple temporal problems for which
we proposed a minimal consistency restoration method. The classical idea to
eliminate all the conflicts of an STP consists in detecting all these conflicts then
in eliminating them. However, this idea can lead to time consuming method since
the number of conflicts in an STP is in general exponential on the number of
STP variables. The method we proposed avoids the exhaustive conflict detection,

56 Khelfallah M. and Benhamou B.

and identifies the smallest subsets of constraints whose correction is sufficient
to eliminate all the conflicts and to restore the consistency of the STP. Thjg
is achieved by searching the minimal hitting sets of the collection of sets whose
elements are sets containing the conflicting constraints of a conflict of the STP g
The algorithm we propose to search hitting sets is an adaptation of the Reiter’s
algorithm [8] for diagnosis. We show that our consistency restoration method
is correct and complete, i.e., it returns all the consistent STPs obtained by
correcting a minimal number of constraints of the initial STP S.

In a future work, we are looking to investigate temporal constraints with
preferences. We hope handle both quantitative and qualitative preferences. We
are also, interested in fusion of disjunctive temporal problems with and without
preferences.

References

1. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Massachusetts, 1990.

2. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49:61-95, 1991.

3. M. Gondron and M. Minoux. Graphes et Algorithmes. Eyrolles, 1979.

4. M. Khelfallah and B. Benhamou. Geographic information revision based on
constraints. In Proc. of the 14th European Conference on Artificial Intelligence
(ECAI’04), pages 828-832, 2004.

. M. Khelfallah and B. Benhamou. A local fusion method of temporal information.
In Proc. of the 8th European Conference on Symbolic and Qualitative Approaches
to Reasoning with Uncertainty (ECSQARU’05), pages 477-488, 2005.

6. C.E. Leiserson and J.B. Saxe. A mixed-integer linear programming problem which
is efficiently solvable. In Proc. of the 21st annual Allerton conference on Commu-
nications, Control, and Computing, pages 204-213, 1983.

7. Y.Z. Lia and C.K. Wong. An algorithm to compact a VLSI symbolic layout with
mixed constraints. In IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, volume 2, pages 62-69, 1983.

8. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57-
95, 1987.

9. R. Shostak. Deciding lincar inequalities by computing loop residues. Journal of
ACM, 28(4):769-779, 1981.

10. R. Wassermann. An algorithm for belief revision. In Proc. of the 7th International
Conference on Principles of Knowledge Representation and Reasoning (KR’00),
pages 345-352, 2000.

11. E. Wiirbel, R. Jeansoulin, and O. Papini. Revision: an application in the framework
of GIS. In Proc. of the 7th International Conference on Principles of Knowledge
Representation and Reasoning (KR’00), pages 505-516, 2000.

12. L. Xu and B. Chouciry. A new cfficient algorithm for solving the simple temporal
problem. In 10th Int. Symposium on Temporal Representation and Reasoning and
4th Int. Conf. on Temporal Logic (TIME-ICTL 03), pages 212-222, 2003.

(42}

